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Abstract. We study 6nire-sizc effeas in lattice models f i r  dynamical phase transitions: For the 
Ziff-Gulari-Bmhad (=E) model on the Cayley tree, it is shown that the order of the transition 
from the reactive phase to the monomer-sturared phase depends upo” the adsorption rule for 
dimers at *e boundary. We also examine the 2 6  model on finite-sized square lanices w~ected 
by a single band. The finitesize effects associated with the first-order and the second-order 
transitions are nakedly differeit. Elhis phenomenon can be exploited to determine the order of 
phase transitions numerically, with modet computing requirements. Our findings emphasize the 
imponance of finitesize effects and gmmetricai constraints in dynamical lattice mcde1s:They 
also help exblain the puzzling difference between the behaviour of the model on percolatian 
clusten and on the Sierpinski gasket. 

1. Introduction 

Lattice models for dynamical phasetransitions are the subjkt of rapidly growing interest 11- 
51. A well known example of both practical and theoretical interest is the model inuoduced 
by Ziff, GUM, and Barshad (ZGB) for b the oxidation  of carbon monoxide by oxygen on 
p@tinum, or palladium [41. The ZGB lanice model fits experiments better than the classical 
approaches of rate equations. It exhibits rich kinetic behaviour, including a second-order 
dynamical phase transition from an absorbing state (lattice saturated with CO) to a reactive 
steady state, and a 6rstIorder transition from the reactive phase to an Oxygen-Saturated phase. 
.In contrast to equilibrium,pme transitions, non-t$librium (also known as ‘dynamical‘) 
phase transitions are less well understood and even their classilication’into universality 
classes, or which of their properties place them into different classes, are still basic open 
questions 161. 

Indeed, the macroscopic kinetics of lattice models is extremely sensitive to changes in 
the microscopic details of the models. For example. the monomer-monomer model [7] 
and the Dollars and dimes (Dd) model [SI represent, StoichiometricaUy, exactly the same 
reaction, A + B -+ AB?. They differ only in that the Dd model includes nearest-neighbour 
excluded-volume effects for one of the species (the ‘Dollars’). This minute change gives 
rise to a whole new reactive phase [8]. 

Another manifestation of this extreme sensitivity to detail arises upon variation of the 
underlying lattices. Studies of the ZGB model on the Sierpinski gasket yield a phase diagram 
similar to regular two-dimensional spice. with one first-order and one second-order phase 
transition [9]. However, on percolation clusters the first-order transition is replaced by a 
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second-order transition [lo]. This difference is puzzling, since for many physical properties, 
such as elasticity and conductivity, the Sierpinski gasket is known to yield essentially the 
same physical behaviour as for percolation clusters. 

Motivated by this riddle. I explore the effects of some commonly neglected features of 
the underlying substrate. I first focus on how changes in the reaction rules at the boundary 
of the lattice influence the kinetics. It is shown that different boundary rules may change the 
order of dynamical phase transitions. I then study the consequences of connecting finite 
size lattices by single bonds. These connecting bonds are analogous to the ‘red bonds’ 
in percolation theory [ll], which are critical to the transport physics and the elasticity of 
the clusters. The study of these composite lattices reveals significant differences between 
finitesize effects in lkxt-order and second-order phase transitions. This suggests a new 
finite-size scaling technique to determine the order of dynamicaI phase transitions which 
requires remarkably modest computing resources. 

2. The ZGB model 

There have been numerous studies of the ZGB model. Here I will focus on its simplest 
version of the adsorption-limited case. The CO molecules are represented by ‘monomers’, 
A, that need one empty lattice site in order to adsorb. The 0 2  molecules are represented 
by Bz ‘dimers’ whose adsorption requires two empty sites. The process is schematically 
written as 

A* f B* --f AB f ** ( I C )  

where ‘*’ denotes an active (empty) site and ‘A*’ and ‘B*’ denote adsorbed particles. The 
adsorption processes ( l a )  and ( l b )  are auempted with probabilities p and 1-p,  respectively. 
The reaction ( I C )  is instantaneous. It foUows adsorption immediately whenever AB pairs 
form. The product desorbs freeing two lattice sites. 
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1 Figure 1. Schematic representation of transitions 

in the ZGB model in two-dimensional lanicer and 5 .  
on the Sierpinski gasket (U), and on percolation 
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For two-dimensional lattices, a reactive steady state is observed for a range of monomer 
adsorption probabilities, p~ < p c pz .  For p c p I  (pz < p) the lattice fills up with B's 
(As) and the process stops. The transition from the dimer-saturated phase to the reactive 
phase is second order, and that from the monomer-saturated phase to the reactive phase 
is 6rst order. The first-order transition is accompanied by a metastable loop, similar to 
equilibrium first-order phase transitions, and the production rate is largest at the transition. 
A similar phase diagram is observed for the zGB model on the Sierpinski gasket 191. On 
percolation clusters, the first-order transition is replaced by a second-order transition and 
the production rate peaks near the centre of the reactive window [IO] (see Egure 1). 

Figure 2. Example of a Cayley tree wih n = 4~levels. 
if the first chosen site for adsorption of a dimer is A. 
the second site may be adsorbed onto any of A's nearest- 
ne&hbours with pmbabiliry f .  when the finr site, B, 
is OD the boundary. adsorption onm C (Kr only neiml 
neighbour) is considered wth probabiliry pb. 

n = 3  

1:: ~ A 
(boundary) n=4 :b 

3. Bouodary effects 

Normally, in order to minimize finite-sue effects, one studies lattice models with periodic 
boundary conditions. However, from a more realistic perspective, if the simulations are to 
correspond to small active patches on a catalytic surface, the lattice is truly finite and one 
should specify the boundary conditions. In h e  ZGB model, a problem arises with respect 
to the adsorption of dimers at~the boundary: to adsorb a dimer one k t  picks up a site at 
random. If s the site   is empty, one of its z nearest neighbours is randomlychosen (z is the 
coordination number of the lattice). If the second site is empty, adsorption of the dimer 
onto the two selected sites takes place. When the first chosen site is at the boundary, it has 
z' e z nearest neighbours. One can proceed in different ways. For example, make a forced 
choice among the z' sites, with probability l/z!, or~make afree choice--as if there were no 
boundary-with the usual probability I/z: 

The effects, if any, of these different possibilities'would be emphasized in cases where 
the boundary~sites constitute a finite fraction of all sites, as for example in percolation 
clusters, or in a Cayley me. In a Cayley tree, where each site at level n branches into two 
sites at level n + 1, half of all sites are boundary sites at the I& layer of the tree. To study 
the boundary effect, define fi  in the following way: whenever the lint chosen site for the 
adsorption of a dimer is at the boundary, we will consider adsorption onto it and its (only) 
nearest neighbour with probability fi'(see figure 2). Thus, p b  = 1 and pb = correspond, 
respectively, to the 'forced' and 'free' boundary conditions discussed above. 

In general, we may ask what happens for any 0 < pb < 1. To answer this question, 
extensive numerical simulations were performed on Cayley trees consisting of n = 17 and 
n = 20 layers (the total number of sites is 2" - 1). The larger lattices were used to test 
for Enite-size effects. These were found to be negligible. Most simulations followed the 
constant coverage(Cc) method [121. In this technique, one Ends the average adsorption 
probability, p .  required to maintaiya constant concentration of monomers or dimers on~the 
lattice (i.e. the~coverage), at the long time asymptotic regime. The cc method enables one 



3728 D ben-Avraham 

to see the characteristic metastable loop of first-order transitions. Traditional simulations, 
where p is kept k e d  and the average coverage is measured, were performed as a consistency 
check. Though less accurate than cc [13]. the latter technique can locate the actual transition 
point in 6rst-order transitions. 
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Figure 3. Simulation results for the Z B  
model on the Cayley tree. Shown is the 
lattice coverage by manamem (a) and dimen 
(.I, as well a~ the overall reaction rate (+), 
as a function of the monomer adsorption 
probability. p.  Plats are for pb = i. 0.36. 
and 0.5 (top to bottom). ?he metastable 
loops characteristic to fim-order transitions 
show up first for p b  t 4. 

The simulation results show a dramatic dependence on the value of p b .  The three phases 
observed in regular two-dimensional lattices are also seen on the Cayley uee. The transition 
from the dimer-saturated phase to the reactive phase is always second order. The transition 
from the monomer-saturated phase to the reactive phase is second order for p b  < 4, but 
kst-order for pb > f .  Figure 3 shows typical simulation results for Pb = i, 0.36, and 0.5. 
The metastable loops characteristic of first-order transitions develop only as pb exceeds f .  
The width of the metastable loop is ralher small, which makes it difficult to detect the first- 
order transition with the traditional simulation technique. Nevertheless, using this technique 
the transition was located for Pb = 0.5 at p = 0,408-a result which is consistent with the 
loop Observed through the cc method. 

The production rate is highest around the centre of the reactive window for small Pb, 

but as p b  increases the maximum moves closer to the monomer-saturated phase. In conIrast 
to the case in regular two-dimensional lattices, the maximum does not coincide with the 
transition point to the monomer-saturated phase, even when the transition is lirst order. 
Finally, the critical values of p which demarcate the reactive window depend strongly upon 
Pb.  As pb increases, the reactive window shifts to higher values of p and reduces in size: 
the second-order and lirst-order,transitions are at p1 = 0.354 and p 2  = 0.388, for p b  = 0.1, 

The boundary probability, pb, plays the role of a multicritical field analogous to 
temperature in a liquid-gas transition. At pb = f we have a tricntical point where the 
separation into two phases (reactive, and monomer-saturated) changes from a continuous 
(second-order) to a discontinuous (first-order) transition. 

and at PI = 0.427 and Pz = 0.432, for Pb = 1. 
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From a naive point of view. one expects that these results for the Cayley free may 
explain the observed differences between the Sierpinski gasket and percolation clusters. 
In percolation clusters the boundary constitutes a finite fraction of all sites, and hence it is 
conceivable that the second-order transition between the reactive and the monomer-saturated 
phase is an artifact of boundary conditions. However, simulations on percolation clusters 
using a range of different boundary conditions show the same behaviour (a second-order 
nansition). The explanation actually lies in the effect of the ‘red bonds’. 

~, 

Figure 4. Composite latrice used to study effect 
of red bands. The two red bands connecting 
the small sublattices to the larger sublanice are 
i n d i d  by thicker lines. 

4. The effect of ‘red bonds’ 

A conspicuous feature of percolation clusters are the ‘red bonds’. The red bonds are those 
bonds that are essential to the connectivity of the clusters: severing ared bond splits a cluster 
into two disconnected parts. Thus. a percolation cluster may be regarded as a collection of 
finife-size lattices (called ‘blobs’) that are connected by red bonds. To-examine the effect of 
the red bonds, I have studied finite-size square lanices connected by a single bond (figure 4). 

Consider a simulation of the ZGB model on a finite-size square lattice. Because of the 
finiteness of the lattice there is truly no reactive phase: the system will always evolve to 
one of the two absorbing s t a ~ s  (saturation with either monomers or dimers), at a finite 
time. -However, if the simulation time is limited, the reaction process may still be active 
as the simulation terminates.. Realistically, simulations are finite with regard to both their 
time extent and the lattice-size. An arbitmy decision must be made as to which part of the 
data represents the steady state, In the present work.tk simulations were run up to a time 
T (one time unit corresponds to one Monte Carlo cycle per lattice site) and the output was 
averaged over the last 10%’of the time. 

Generally, one observes finite-size corrections to the ideal thermodynamic limit. If 
a simulation is~performed for a certain value of p within the reactive window (of the 
thermodynamic limit), a small lattice is likely to saturate sooner than a large lattice. Hence, 
for a Yixed time T the Enitesize corrections are more pronounced in small lattices. If the 
subsaate consists of two finite-si% lattices connected by a single red bond, we may naively 
expect that the results will be well approximated by the mass average of the two lat t icesas  
if the lattices were disconnected. Simulations actually show that this is only partly true. 

Simulations were performed on 8 x 8 and 17 x 17 s q k e  lattices (separately), as well 
as on a composite of these lattices connected by red bonds (Egure 4). The time T was 
ked at T =~ 2400 in all the tuns. With some experimentation, we found that this time 
emphasizes the differences between the finite size-corrections in the two lattice sizes. A 
typical run requires a few seconds on an IBM-NSC/6000 workstation. This enabled us to 
perform about 300 runs per data point and to collect all our data in a few CPU hours. All 
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P 
Figure 5. Effect of red bonds. Shown is the lattice coverage by dimers as a function of the 
monbmor adsorption probability, p. for an 8 x 8 lattice (dotted line), a I7 x 17 lanice (broken 
line). their composite lattice of figure 4 (solid line), and the mass avenge of its three sublattices 
(broken-dotted line). The mars average agress well with the composite lattice only near the first- 
order transition. Near the semnd+rder transition, the composite lattice appears to be effectively 
larger than the 11 x 11 sublattice. 

simulations were done according to the traditional method, where p is kept constant and 
data is accumulated for the coverage. 

The simulation data are summarized in figure 5. Shown is the concentration of dimers as 
a function of the monomer deposition probability, p ,  for the 8 x 8 lattice, the 17 x 17 lattice, 
and the composite lattice of figure 4. The mass-averaged data of the 17 x 17 lattice and the 
two 8 x 8 lattices is drawn for comparison. The finite-sue corrections for the smaller 8 x 8 
lattice are significantly larger, as expected. For the larger 17 x 17 lattice the corrections 
are smaller; the apparent reactive window is wider, and the transition corresponding to the 
ideally disc,ontinuous, fust-order transition of the thermodynamic limit is sharper. 

The data of the composite lattice are well approximated by the mass average near 
the first-order transition (of the thermodynamic limit). However, near the second-order 
transition the composite lattice behaves as if it were larger than its separate parts- if 
it were the sum of its parts, rather than their average. This difference between the 6rst- 
and the second-order transitions can be understood in terms of the correlation length. The 
correlation length is finite for fust-order transitions but diverges for second-order transitions. 
Thus, for first-order transitions the correlation length is short enough that the different parts 
of the composite lattice cannot communicate effectively across the red bond. The results 
are then as if the sublattices were disconnected, yielding the mass average. For the second- 
order transition. the correlation length is large enough that the sublattices can communicate 
efficiently, even through a single red bond, making the size of the lattice effectively equal 
to the sum of its parts. 

The phenomenon discussed above can be exploited as a method for finding out the order 
of dynamical phase transitions numerically. Frequently, it is difficult to distinguish between 
fust- and second-order transitions even using prohibitively big lattices and long simulation 
times. Instead, one could study very small lattices and short simulation times. Comparison 
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of the apparent transition (as modilied by the finite-size effects) on separate lattices to that 
of the same lattices connected by a red bond would easily reveal the nature of the transition. 
This method can be canied out with minimal computing power. 

We argue that the red bonds are responsible for the transformation of the hxt-order 
transition into a second-order transition in percolation clusters. It is plausible that the 
different 'blobs' are effectively disconnected near the bt-order transition, and that their 
mass-averaged behaviour yields an apparent second-order transition. This hypothesis is 
confirmed by our simulations of the ZGB model on percolation clusters. Clusters were 
generated with the La th  algorithm [14] and simulations were performed on the clusters, as 
well as on the same clusters but with the red bonds blocked (thus effectively disconnecting 
the cluster into blobs). The results near the transition to the monomer-saturated phase are 
virtually unaffected by the blocking. 

5. Summary and discussion 

We have studied some effects arising in dynamical systems from constpink of finite-size: 
(1) constraints imposed by the boundary of lattices,'in the form of special reaction rules, 
and (2) the effects of connecting finite-size lattices through red bonds. The boundary effects 
were exemplified by the ZGB model on the Cayley vee, where the adsorption of dimers at 
the boundary sites is controlled by a probability pb. This parameter serves as a criticalbeld, 
analogous to temperature in liquid-gas transitions. The transition from the reactive phase 
to the monomer-saturated phase is first order for Pb e +, but second-order otherwise, i.e. 
there is a tricritical point at Pb = +.,The effect of red bonds was demonstrated for the ZFB 
model on finitesize square lattices. The simulation results for lattices connected via red 
bonds ar?. similar to the mass average of the simulation results on the disconnected lattices, 
near first-order transitions. However, near second-order transitions the red bonds connect 
the subhaices efficiently, yielding a composite lattice which is seemingly larger than its 
constituent parts. 

Our findings are relevant to the. fact that the transition between the reactive phase and 
the monomer-saturated phase for the ZGB model on the Sierpinsld gasket is first order, while 
it is second order on percolation clusters. Because the boundary sites of percolation clusters 
constitute a finite fraction of all sites, it is &"ling to conclude that boundary effects are 
responsible for this anomaly. However, we have experimented with merent reaction rules 
at the boundary of percolation clusters, and the transition remained.always second order. 
Moreover, we have simulated the ZGB model on the backbone of percolation clusters. The 
transition remains second order in spite of the greater similarity of the backbone (over that 
of the full cluster) to the Sierpinski gasket. 

The second-order transition is rmly due to the red bonds. The cluster behaves as if it 
were disconnected into finitesized 'blobs'. Simulations then yield the mass average of the 
coverage on the different blobs. This has the effect of smearing the transition, making it 
seem second order. Indeed. simulations on clusters with the red bonds blocked (effectively 
disconnecting the blobs) yield the same results as without~ the blocking, c o w i n g  this 
hypothesis. 

A cenaal conclusion of the present work is that we should pay more heed to finite-size 
effects. In real catalysis systems, reactions frequently~take place on small active patches 
where the b o u n c e s  and the averaging over lauices of different sizes may play an important 
role. We have seen that such effects may even change the nature of phase transitions. 
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From a theoretical point of view, there remain several interesting open questions. The 
boundary effect in the Cayley tree provides us with an opportunity to research a hicritical 
point in a dynamic phase transition. Most second-order transitions in the dynamical systems 
studied so far belong to the same universality class as directed percolation. Is it also hue 
for the second-order transitions brought about by finitesize effects in the Cayley tree and 
in clusters connected by red bonds? previous studies have demonstrated the usefulness of 
analyzing finite sue effects in an ensemble where the stopped processes that have reached 
saturation are excluded [15]. In this work, we have shown that by including these cases we 
obtain a powerful technique to determine the order of a transition (the effect of red bonds). 
In summary, finite-size effects are important in practical systems and may be exploited to 
yield new theoretical insights and better analysis techniques. Further research in this area 
is needed. 
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